Welcome to HCV Advocate’s hepatitis blog. The intent of this blog is to keep our website audience up-to-date on information about hepatitis and to answer some of our web site and training audience questions. People are encouraged to submit questions and post comments.

For more information on how to use this blog, the HCV drug pipeline, and for more information on HCV clinical trials
click here

Be sure to check out our other blogs: The HBV Advocate Blog and Hepatitis & Tattoos.


Alan Franciscus

Editor-in-Chief

HCV Advocate



Thursday, March 12, 2015

Study details microRNA's role as a double agent during Hep C infection

In the battle between a cell and a virus, either side may resort to subterfuge. Molecular messages, which control the cellular machinery both sides need, are vulnerable to interception or forgery. New research at Rockefeller University has revealed the unique twist on just such a strategy deployed by the liver-infecting Hepatitis C virus - one that may help explain the progression of liver disease and that the researchers suspect may be found more widely in the world of disease-causing viruses.

Led jointly by Charles Rice, the Maurice R. and Corinne P. Greenberg Professor in Virology and head of the Laboratory of Virology and Infectious Disease and Robert Darnell, Senior Attending Physician, Robert and Harriet Heilbrunn Professor, and head of the Laboratory of Molecular Neuro-oncology, the research is described today (March 12) in Cell. It employed a powerful combination of techniques to map the interactions between the and a small piece of genetic material - known as miRNA-122 - that is produced almost exclusively by cells, which normally use it to regulate expression of their own genes.

"It is well known that once inside a liver cell, the hepatitis C virus must bind to miRNA-122 in order to establish a persistent infection. We found an unanticipated consequence of this interaction: By binding to miRNA-122, the virus acts like a sponge, soaking up these gene-regulating molecules," says first author Joseph Luna, a graduate student with a joint appointment in the labs. "Our experiments showed this has the effect of skewing gene activity in infected liver cells."

Read more...

No comments:

Post a Comment